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Abstract. At a continuous vansition into a non-unique absorbing state, particle systems may 
exhibit non-universal critical behaviour, in apparent violation of hyperscaling. We propose a 
generalized scaling theory for dynamic critical behaviour at a transition to an absoibing state, 
which is capable of describing exponents which vary according to the initial configuration. The 
resulting hypenaling relation is supported by simulations of WO lattice models. 

Non-equilibrium phase transitions continue to elicit great interest from physical and 
biological scientists. In the hope of obtaining a better understanding of non-equilibrium 
critical phenomena, models exhibiting phase transitions to an absorbing state are under 
intensive study in statistical physics. The dichotomy between an absorbing (dead, inactive) 
state and an active one arises naturally in such diverse areas-as catalysis,[ll, epidemiology 
[24 ]  and the transition to turbulence [SI. 

The essential features of the phase transition are typified by the contact process (CP) 
[ Z ] .  In the CP, each site of the lattice Zd is either occupied or vacant. Occupied sites 
become vacant at a unit rate, whilst a vacant site i becomes occupied at a rate Xqi, with qi 
the fraction of occupied nearest neighbours of i .  Evidently, the vacuum is absorbing. The 
growth rate A determines the ultimate survival of the population: for A c IC the vacuum is 
the unique steady state, but for A > A=(= 3.298 in one dimension) there .is also an active 
stationary state characterized by a non-zero particle density 3 a (A - A,)p. The transition 
at Ac is a non-equilibrium critical point, belonging to the universality class of directed 
percolation (DP) (4,671 and Reggeon field theory 181. Indeed, studies of a host of models 
provide ample support for the conjecture that continuous transitions’to a unique absorbing 
state generically fall in the DP class [9,lOJ. 

The situation regarding models with multiple absorbing states is more complex. On one 
hand, studies of some two-dimensional catalysis models yield critical exponents different 
from those of the DP [ll-131. On the other, the onedimensional pair contact process 
( X P )  and dimer reaction (TJR) clearly fall in the DP class, as far as static critical behaviour 
is concerned [14, IS]. (In all of these models, the number of absorbing configurations 
grows exponentially with lattice size.) The dynamic critical properties of the PCP and DR 
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were, surprisingly, found to be non-universal, the exponents depending upon the nature of 
the initial configuration [lS]. While this variation is quite regular, it appears to violate a 
basic hyperscaling relation amongst the exponents 8, 7 and z (defined below), suggesting a 
breakdown of the well established scaling theory. 

This apparent breakdown has prompted us to re-examine the scaling hypothesis for 
models with multiple absorbing states. We arrive at a scaling theory in which additional 
exponents are expected to depend upon the starting configuration and in which the exponents 
satisfy a generalized hyperscaling relation. The latter is verified in simulations of the DR 
and of a new model called the threshold transfer process mP). In what follows, we define 
the models, present the scaling theory and report the numerical evidence supporting it. 

Simulations of the TTP permit us to study non-universal critical spreading in the context 
of a three-state model, providing a check on the robustness of earlier findings [U]. In the 
TTP, each site may be vacant, or singly or doubly occupied, corresponding to uj = 0 , l  or 
2. In each cycle of the evolution, a site i is chosen at random. If ui = 0, then ui + 1 
with probability r ;  if ui = 1, then oi + 0 with probability 1 - r .  (‘0’ and ‘1’ sites are left 
unchanged with probabilities 1 - r and r ,  respectively.) In the absence of doubly occupied 
sites, we have a trivial dynamics in which a fraction r of the sites have uj = 1 in the steady 
state. However, if U( = 2, the particles may move to neighbouring sites. If q - 1  e 2, one 
particle moves to that site; independently, a particle moves from i to i + 1 if U;+, < 2. ut 
is diminished accordingly in this deterministic particle-conserving transfer. Survival of the 
doubly occupied sites hinges on the process ( I ,  2, I)  + (2,0,2) (their number decreases or 
remains the same in all other events) and so depends upon the parameter r ,  which controls 
the particle density. The set of configurations devoid of doubly occupied sites comprises 
an absorbing subspace of the dynamics, which can be avoided only if r is sufficiently large. 
Thus, we identify the density of doubly occupied sites, p2, as the order parameter of the 
TTP. 

We note in passing that the n P  bears some resemblance to a sandpile model devised 
by Manna [16] and to a forest-fire model (FFM) proposed by Bak et a1 [17,18]. Under 
the correspondence: 2 c) burning tree, 1 live tree and 0 ++ ashes, the process 
1,2. 1 + 2,0 ,2  describes a burning tree setting its neighbours on fire and r represents 
the rate at which new trees emerge from the ashes. However, the TTP permits doubly 
occupied sites to arise only via transfer; there is no ‘lightning’ process as in the FFM. A 
further contrast is that a rule such as 0,2,0 + 1, 0, 1 has no analogue in the FFM. Despite 
certain common aspects, our model is therefore very different from the FFM. 

The dimer reaction (DR), introduced in [IS], is a lattice model in which sites may be 
either vacant or (singly) occupied; particles may not occupy adjacent sites. In each step of 
the process, a site i is selected at random. If i is occupied, or is blocked by a neighbouring 
particle, then nothing happens. But if i is open (i.e. i and its neighbours are vacant), a 
new particle appears, which may remain at i or react with another particle depending on 
the occupancy of the nearby sites: 

(i) If at least one of the second neighbours, i - 2, and i + 2, is occupied, then with 
probability 1 - p there is a reaction between the new particle and its neighbour (chosen 
at random if there is a choice), which removes them both; with probability p there is no 
reaction and the new particle remains. 

(ii) If both second neighbours are vacant, but at least one of the third neighbours is 
occupied, then a reaction with a third-neighbour particle may occur with probabilities as in 
case (i). 

(iii) If none of the second or thud neighbours is occupied, the new particle remains at 
site i. 

J F F Mendes et a1 



Generalized scaling for models with multiple absorbing states 3021 

In the DR, any configuration devoid of open sites is absorbing. The order parameter is 
the stationary open-site fraction &. 

Both the TTP and the DR exhibit continuous phase transitions to an absorbing state 
marked by a vanishing order parameter at a critical value of r or of p .  In this work, we are 
concerned with critical spreading, that is the evolution of a critical system from a nearly- 
absorbing initial configuration. The exponents describing this spreading are non-universal, 
i.e. they depend upon the particle density in the initial state [15]. Before reporting our 
numerical results, we present a scaling theory for such processes. 

Following Grassberger and de la Torre [19], we consider an ensemble of trials, all 
starting from the same initial configuration: a single seed in an otherwise absorbing 
configuration. (For the contact process, this means one particle in an otherwise empty lattice; 
for the DR. one open site: and for the “P, one doubly occupied site.) Let p ( x ,  t )  denote the 
local order-parameter density and A the distance from the critical point (A = A - A, in the 
contact process). In the critical region the system is characterized by a correlation length 
tl M A-”I and relaxation time T M A-”fl. At the critical point the asymptotic evolution is 
described by power laws; for A # 0, the power laws are modified by scaling functions which 
depend upon the dimensionless ratios x / t l  and t / r .  Thus the survival probability-i.e. that 
a trial has evaded the absorbing state, p ( x )  =&is expected to follow 

P( t )  Y t-’@(Atl/Yl) (1) 

so that P M t -S at the critical point. The order-parameter density (averaged over all trials) 
is 

where the x-dependence reflects symmetry and power-law critical spreading from the seed 
at x = 0. For A = 0, one finds, on integrating equation (2) over space, that the mean 
population n(t) M t q ,  whilst the second moment implies that the mean-square spread of the 
population R Z ( t )  = ( x ~ ) ~  M t‘. The exponents 6 ,  q and z characterize critical spreading; 
several relations connect them with other exponents. 

liml-,m P ( t )  = 
p ,  the stationary particle density [19]. Existence of the limit requires @ ( x )  M x6”I for large 
x and p M A6 then implies the scaling relation 

Consider first the CP, for which the ultimate survival probability Pm 

For A < 0 and (large) fixed i we expect p ( x ,  t )  e-x/$, which implies (since 6 M A-”L) 
that for U < 0, F(u ,  U) o( exp(-constant&vl”L). In order for t to be time independent, 
we must have 

Finally, note that for A > 0, the local density at any fixed x ,  in a surviving trial, must 
approach p as t -+ W. Since p ( x ,  t )  represents an average over all trials, we have 

p ( x .  t )  + PmAp M AzP (5) 

as z -+ CO, which implies that F(0 ,  U) M uzp for large U. Existence of a stationary state 
then requires that the exponents satisfy the hyperscaling relation 

46 t 271 = d z .  (6) 
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We turn now to modeh such as the PCP [14], the DR [15] and the TTP, which possess 
a multitude of absorbing configurations. Absorbing configurations in the PCP and DR can 
have various particle densities; the analogous variable in the TTP is the density p~ of singly 
occupied sites. We refer to this aspect of the (near-absorbing) initial configuration in a 
critical spreading process as the 'initial density', @i. One value of @i is special in these 
models: the 'natural' particle density & of the quasistationary critical process. (For the 
DR, N 0.418; for the lTP, & N 0.69.) Simulations indicate that in each of these one- 
dimensional models, the sfafic critical behaviour belongs to the directed percolation class 
but that the exponents 8 ,  rand z are non-universal, varying continuously with initial density. 
(The critical point Ac, by contrast, does not change as @i is varied.) Only when q5i = & 
do the exponents assume DP values and only then do they satisfy equation (6). Rather 
than interpreting this as a violation of hyperscaling, we shall argue that in these models the 
scaling hypothesis must be modified, leading to a generalized hyperscaling relation. 

We assume that, as in models with a unique absorbing state, the order-parameter density 
has the scaling form 

p ( x ,  t )  tri'-dr'~zG(xz/fz', At"6) (7) 

where the primed exponents are functions of 4;. Similarly, we suppose the survival 
probability follows 

P ( t )  E t-*'O(Atr16). (8) 

Since the stationary distribution is unique, we have, as before, that 

P ( x 7  f) + Pm(@i)A' (9) 

as t --f CO, with' ,9 the usual DP exponent. However, there is no reason to suppose that 
Pm(@i) oc i j ,  when $i # q4c. In fact, if this were so, we would have 6'v; = ,3, implying that 
the pcimed exponents satisfy equation (6). Since they do not, we conclude that the exponent 
governing the ultimate survival probability must also depend upon @i, i.e. Pw a Afl with 
,9' = #U;. By the same arguments as those applied to the CP, we find 

2' = 2u;/v; (10) 

where we have introduced exponents U; and U; which govern the mean lifetime and spatial 
extent of a cluster grown from a single seed. The asymptotic behaviour of the order- 
parameter density is now p ( x ,  t )  + A@+fl and G(0, y )  oc yp+fl for large y ,  which implies 
the generalized hyperscaling relation 

Z ' i + $  6'+2q'=dz'. (11) ( B )  
We have verified equation (11) in simulations of the DR and the TTP. Using time- 

dependent simulations (for't < 2000 and samples of lo5 to 8 x 10s trials) we determined 
the critical point of the TrP as r, = 0.6894(3). Analysis of steady-state data for &, as 
shown in figure 1, then yields ,9 = 0.279(5), in good agreement with the value for DP in 
1 + 1 dimensions, ,9 = 0.2769(2) [20,21]. The exponents a', q' and z' may be determined 
from simulations at r, using an initial configuration very close to the absorbing state. We 
studied various initial densities, including & = 0.69, the natural value. The ultimate 
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survival-probability exponent p' was determined from similar studies using r at slightly 
above the critical value. The simulations begin with one doubly occupied site at the origin; 
the remaining sites are taken as occupied or vacant, independently, with probabilities q5i and 
1 - 6, respectively. The dynamics is restricted to an active region defined as follows. Let 
Ai be the set of all sites which are doubly occupied or have a doubly occupied neighbour 
after the ith step of the trial. (A0 comprises the origin and its neighbours.) The site to be 
updated at step i + 1 is selected at random from U&Aj. Thus, the evolution proceeds on an 
expanding set within the 'light-cone' emanating from the origin. As in the DR and the PCP, 
distant sites are not updated until the active region reaches their neighbourhood. Figure 2 
shows a local-slope analysis for 8, i.e. a plot of 6 ( t )  In[P(mt)/P(r)]/Inm against t- ' ,  
for various initial densities. (In this study we used m = 5.) In figure 3 we show typical 
results for the'ultimate survival probability, leading to an estimate for @'. 

- 0 . 2 , , ,  , , a . ,  , , I , ,  , , I . .  . , , . , . 

-0.3 
a" 

-0.4 - 3 
-0.5 

-3.5 -3 -2.5 -2 -1.5 -1 
log(r -r ) 

C 

Figure 1. Steady-state order-parameter density, ,&, against distance from e r i t i d  point in the 
TIP: main diagram, log-log plot; inset, linear plot. 

The simulation procedure for the DR is described in [15]. On the basis of more extensive 
studies of the half-life r ,  on lattices of up to loo0 sites, we now find pc  = 0.26401(2), 
consistent with the earlier result of 0.264 OO(5). We used p values slightly below the critical 
point (pc  - p 4 0.05) in determinations of p' at the four initial densities studied in [15]. 
According to equation (S), in a plot of At"";, data for various 
A (for a particular q5i) should fall on a single curve. Figure 4 shows a reasonably good 
collapse of the data for each of four initial densities. 

Our results for the exponents in the TTP and DR are given in table 1 together with a test 
of the new hyperscaling relation (11). Evidently, it is confirmed to within the precision of 
the data. (By contrast, the DP hyperscaling relation, equation (6), is clearly violated.) Thus, 

= A-P'P against ? 
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Figure 2. Leal-slope analysis of the survival probability data for various A values in the TIP. 
S is estimated from the I -f m intercept. 

brJ 
0 
CI 

log(r -r ) 
C 

Figure 3. Ultimate survival probability against distance from the critical point in the TIP for 
initial density di = 0.4. 
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e t b o  

1.0 

0.5 

0.0 , 
-5 -4 -3 -2 -1 0 

In i 
Figure 4. Scaling plot of the survival probability in the DR: +, A = 0.05; x, A = 0.02: 0, 
A = 0.01: 0, A = 0.005: 0, A = 0.002. Initial densities (top to bottom) r$i = 0.5.0.418.0.38, 
and 0.333. 

the spreading and survival exponents for transitions to a non-unique absorbing state may be 
described using conventional scaling theory, properly generalized to allow for a dependence 

The dependence of 6'. q' and p' upon the initial density is quite pronounced; that of 
z much weaker. We have made no determination of v i  and our results for U;, which 
come solely from the relation vi = P/S', show no significant variation with 41. (We find 
uII = 1.80(6) and 1.76(6) for the TTP and the DR, respectively; the DP value is 1.74(1).) In 
light of equation (lo), it appears that UL is not strongly dependent upon the initial density 
either. 

Further examination of the data indicates that a'+$ is also very nearly constanr This is 
clear from the plot of 7' against 6' for all three models (TTP, DR and FCP) shown in figure 5. 
(The slope of the linear best-fit is -0.995.) It is also worth noting that the exponents of 
the (two-dimensional) dimer-timer model [I21 differ from those of the DP but that 6 + q 
is again the same as in the DP. (Simulations of the dimer-trimer model yield 6 = 0.40(1), 
I) = 0.28(I), compared with 0.460(6), and 0.214(8), respectively, for two-dimensional DP 
[ZZ].) Now 6' + q' is the exponent governing the population growth in surviving critical 
trials. Its independence of $i suggests that the asymptotic properties of a surviving trial are 

upon the initial density. *~ 
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Table 1. Critical exponents of the m and the DR. Figures in parentheses denote uncertainties 
in the last figure(s). 

4+ 6' '1) 2'12 P' l l r  + (1 + (8/"' - 2'12 ' , 

0.75 0.136(1) 0.347(4) 0.632(7) 0.250(5) O.OO(1) 
0.69 0.1610) 0.319(3) 0.632(7) 0.279(5) O.OO(1) 
0.60 0.192(2) 0288(3) 0.630(7) 0.356(5) O.OO(1) 
0.50 0.227(2) 0.246(2) 0.623(7) 0.426(5) O.OO(l) 
0.40 0.270(3) 0.204(2) 0.622(7) 0.497(5) O.OO(1) 
0.31 0.299(3) 0.169(2) 0.617(7) 0.556(6) O.OO(1) 
0.30 0.303(3) 0.170(2) 0.621(7) 0.567(6) O.OO(1) 
0.25 0.3160) 0.161(2) 0.624(7) 0.591(6) O.OO(1) 
0.20 0.342(3) 0.133(1) 0.622(7) 0.640(6) O.OO(l) 
0.10 0.371(4) 0.097(1) 0.615(7) 0.705(7) O.OO(1) 

Threshold transfer process 

Dimer reaction 
0.333 0.107(2) 0.362(3) 0.634(3) 0.182(10) O.OO(l) 
0.380 0.133(2) 0.327(3) 0.629(5) 0.241(6) -0.02(1) 
0.418 0.158(2) 0.302(4) 0.626(3) 0.275(2) -O.Ol(l) 
0.500 0.205Ci) 0.250(51 0.620(31 0.357(10) -O.Ol(l) 

0.3 . 

F 

02 . 

0.1 . 

I I I I I I I 

0.1 0.2 0.3 0.4 
6 

Figure 5. rf against 8' for the pcp, DR and m. The slope of the best-fit straight line is -0.995, 

not affected by the initial density. This conclusion is strongly supported by the absence of 
any detectable shift in the critical point as r$i is varied. As further confirmation, one may 
note that, as t + 00, only a negligible fraction of a surviving cluster is actually in contact 
with the external density &. Deep inside the cluster, the particle density must approach the 
natural value &. This point of view also implies that z', which describes surviving trials 
exclusively, should be constant. In fact, if z' and 8' + 17' are constant, then equations (10) 
and (1 1) require that U; and U; are constant as well. The latter exponents will then assume 
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their static values, which must be independent of q5j, since they describe the stationary state.. 
We are led, by this line of argument, to a more economical description of critical spreading 
in which all of the exponent variation follows from a single cause: the dependence of the 
survival probability upon initial density. The ensuing predictions regarding exponents are 
consistent with OUT numerical results, except for a small variation in z‘ with q 5 j .  One may 
argue, however, that the results for z’ are affected by q5j-dependent corrections to scaling and 
that a more precise numerical test is needed. In summary, we believe that the most natural 
and parsimonious interpretation is that the initial density influences the survival probability 
but not the scaling properties of surviving events. 

The PCP, DR and TTP all involve a second variable, q5, dynamically coupled to the 
order parameter. A quantitative theory of the dependence survival probability, and the 
associated exponents 6’ and j3’, upon the initial density q 5 j  has yet to be devised. However, 
we can offer some intuitive basis for understanding non-universality by suggesting that, in 
these processes, the initial density plays a role analogous to that of a marginal parameter. 
Such parameters, invariant under renormalization group transformations, often give rise to 
exponents which vary continuously along a line of fixed points. In the present case, q5j 

represents a property of the medium into which the process grows and which is never 
forgotten, since, to survive, a critical process must repeatedly invade new territory. A 
renormalization group transformation generally involves coarse graining (which, generally, 
conserves density) and rescaling. Such a transformation may be expected to leave q 5 j  (the 
density outside the active region) invariant while driving the correlation length of this region 
to zero. Indeed, the spreading exponents are insensitive to (short-range) correlations in the 
initial state 1151. A more detailed understanding of non-universality in these models may 
emerge when a suitable renormalization group scheme is devised. 
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